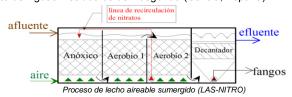


INNDES LASNITRO: Investigación de un lecho aireado sumergido como solución de depuración integrada de materia orgánica, nitrógeno y micro-contaminantes.

Objetivos científico-técnicos

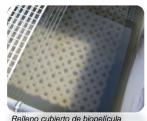

El objetivo general fue la evaluación del funcionamiento y calibración del diseño de un lecho aireado sumergido aplicado al tratamiento de agua residual urbana para la reducción de materia orgánica (DBO, DQO) y nitrógeno total (NT). Para esto, en el 2010 se construyó e implantó un sistema a escala real en la Planta Municipal de Tratamiento de Aguas Residuales de Abegondo (Galicia, España).

Este municipio posee una red unitaria de saneamiento. La planta experimental fue diseñada para servir a una población de 200 habitantes-equivalentes (h-e), siendo 1 h-e = 60 g DBO_x/día, tal como señala la Directiva 91/271/CEE.

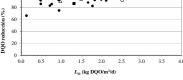
Otros objetivos del proyecto fueron evaluar el consumo energético y la producción de lodos del proceso.

Principales actividades desarrolladas

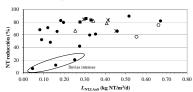
- 1. Diseño de la planta experimental a escala real.
- Proyecto y construcción de la planta en hormigón prefabricado.
- Transporte, instalación y puesta en marcha de la planta experimental.
- Explotación y control del funcionamiento de la planta durante 15 meses. La planta fue sometida a variaciones de carga contaminante mediante cambios en el caudal alimentado.


Parámetro	Unidad	Afluente	Efluente
DBO ₅	mg/L	370 (250)	11 (7)
DQO	mg/L	1015 (686)	58 (28)
NTK	mg/L	59 (40)	10 (7)
NT	mg/L	60 (39)	15 (6)
N-NO _x -a	mg/L	1.3 (1.2)	5.0 (3.0)
Alcalinidad	mg/L CaCO ₃	162 (156)	75 (44)
pH		7.10 (0.21)	7.26 (0.21)
a N-NO _x = N-NO ₃ + N-NO ₂			

Concentraciones promedio ± desviación estándar del afluente y efluente del proceso LAS/LAnS en estado estacionario (muestras compuestas 24-h y nº 26)



Resultados y Conclusiones


Los valores promedio de las concentraciones de DBO₅, DQO y NT en el afluente fueron 370, 1015 y 60 mg/L, respectivamente. La planta piloto produjo un efluente de muy buena calidad durante su funcionamiento en estado estacionario. Las concentraciones promedio de DBO₅, DQO y NT en el efluente final fueron 11, 58 y 15 mg/L, respectivamente.

La planta piloto fue diseñada para tratar las aguas residuales de una aglomeración de 200 h-e (12 kg DBO₅/d, Q = 0.46 L/s). Sin embargo, debido a la elevada concentración del afluente, el reactor consiguió tratar con gran eficacia una carga correspondiente a 480 h-e (28.8 kg DBO₅/d, Q = 1.2 L/s). Con carga orgánica correspondiente a 480 h-e, los porcentajes de eliminación alcanzados para DBO₅, DQO y NT fueron 98, 97 y 78%, respectivamente. Esta es una constatación de la capacidad de este proceso para absorber sobrecargas hidráulicas y de contaminación mientras mantiene un rendimiento estable.

La desnitrificación fue realizada usando la propia materia orgánica del agua residual doméstica. En la celda o etapa anóxica se utilizó aireación intermitente para mejorar la tasa de desnitrificación. En este proyecto, la pre-desnitrificación con un lecho aireable sumergido ha demostrado ser un proceso muy eficaz para la eliminación avanzada de NT. La aireación intermitente y controlada de la etapa de pre-desnitrificación resultó adecuada para obtener una elevada eficacia en la eliminación de NT, sin que se produzca inhibición debido a la concentración de oxígeno disuelto en el seno líquido. La desnitrificación funcionó adecuadamente con un rango de caudal de recirculación de nitrato de entre 2Q y 4Q.

• Q±0.3 L/s; R=10 ■Q±0.3 L/s; R=4 Q±0.3 L/s; R=2 O Q±0.6 L/s; R=4 • Qm = 0.6 L/s; R = 2.7 Efecto de la carga orgánica (como DQO) sobre el rendimiento del proceso

xQ=0.3L/s; R=10■Q=0.3L/s; R=4 QQ=0.3L/s; R=2 QQ=0.6L/s; R=4 QQ=0.6L/s; R=2.7

Efecto de la carga aplicada de NT a la etapa LAnS sobre la velocidad de eliminación de NT.

Por otra parte, la aireación intermitente y controlada de las etapas aerobias resultó en una reducción significativa del consumo energético. Sin embargo, es necesario ampliar esta parte del estudio para optimizar los ciclos de aireación.

La explotación y mantenimiento de la planta fue muy simple y básicamente consistió en la purga periódica de los lodos en exceso. Esta característica hace de este proceso aconsejable para su aplicación en la depuración de aguas residuales de pequeños núcleos.

Agradecimientos

Este trabajo fue financiado por Consellería de Economía e Industria. Tecnologías del Medionatural y Desarrollo Sostenible (MDS). Programas Sectoriales de Investigación Aplicada: PEME I+D e I+D suma del Plan Gallego de Investigación, Desarrollo e Innovación Tecnológica (INCITE) (Ref. 09MDS035E). INDES.

Autores

A. Jácome Burgos (UDC) R. Novoa (Russula) J. Molina Burgos (GEAMA) J. Suárez López (UDC) D. Torres Sánchez (GEAMA) P. Ures Rodríguez (GEAMA)

