

Evaluación de un proceso de biodiscos de baja carga a escala real para el tratamiento de agua residual doméstica.

Objetivos científico-técnicos

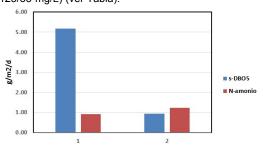
El objetivo general de este estudio fue evaluar el rendimiento de un sistema de biodiscos a escala real, en cuanto a la oxidación de materia orgánica total y soluble, y de amonio por nitrificación. Los objetivos específicos fueron:

- Verificar que el efluente final de la EDAR cumpla con los límites legales de vertido.
- Evaluar la eficacia de cada etapa del sistema.
- Caracterizar las cinéticas de eliminación de materia orgánica soluble y de nitrificación.

Vista general de la EDAR de Limiñón (Abegondo, Galicia - España)

Actividades realizadas

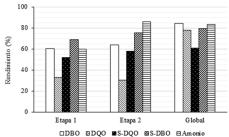
- 1.- Comprobación mediante mediciones "in situ" de las características de la EDAR de Limiñón (Abegondo) y en particular del sistema de biodiscos: longitud de ejes de los biodiscos, diámetro de los biodiscos, número de biodiscos por etapa, calado de agua por etapa, comprobación de la velocidad de giro de los discos, etc.
- 2.- Montaje de estaciones de control en las secciones de entrada y de salida del tratamiento secundario, es decir, a la entrada a los biodiscos y a la salida del decantador secundario. Las estaciones contaban con equipos automáticos para la toma de muestra y varios medidores en continuo (por ejemplo: pH, Conductividad). En la sección de entrada se instaló también un medidor de caudal afluente.
- 3.- Instalación de sondas de medición en continuo. En la primera etapa de los biodiscos: OD y UVAS-254. En la segunda etapa: amonio.
- 4.- Campañas de caracterización físico-química de las aguas mediante perfiles bi-horarios y muestra compuesta, en varios puntos del sistema: afluente al reactor de biodiscos; afluente a la etapa 2 y efluente final del decantador.


Resultados

La EDAR evaluada fue la del núcleo de Limiñón (Abegondo) de aproximadamente 400 habitantes. Los caudales diarios variaron de 125.4 a 394.9 m³/d (promedio = 224.8 m³/d, 60 días de mediciones). En régimen horario el caudal medio fue 9.4 m³/h y el máximo 19.9 m³/h (coeficiente punta = 2.1). El caudal diario medio representa una dotación de saneamiento de 562 L/h-e/d. Esta dotación resulta ficticia, y sugiere un elevado grado de infiltración de aguas freáticas.

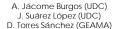
El territorio se caracteriza por tener una pertinaz pluviosidad sobre todo en invierno-primavera. La lluvia caída durante el periodo de estudio fue de 197.9 mm (Estación "Mabegondo" de MeteoGalicia).

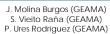
_					
C_{C}	n	>lı	ıci	On	OC


El sistema de biodiscos alcanzó rendimientos de 79, 83, 61, 80 y 84 % de ${\rm DBO_5}$ soluble (s- ${\rm DBO}$), ${\rm DBO_5}$ (DBO), DQO soluble (s- ${\rm DQO}$), DQO, y nitrógeno amoniacal. Bajo las condiciones estudiadas el sistema funcionó adecuadamente para la eliminación de DBO, DQO y SS. Los valores promedio (en mg/L) de estos parámetros, 21/63/21, están muy por debajo de los límites exigidos en la autorización de vertido (25/125/35 mg/L) (ver Tabla).

Cargas oxidadas de s-DBO5 y amonio por etapa de biodiscos

Parámetro	Unidad	Afluente	Efluente	Límite ^(a)	Rendimiento		
pH		7.39 ± 0.41	7.00 ± 0.37				
Conductividad	μS/cm	483 ± 97	403 ± 104				
Alcalinidad	mg/L	147 ± 33	55 ± 33				
SS	mg/L	142 ± 123	21 ± 9	35	85.2%		
SSV	mg/L	94 ± 71	15 ± 6				
DBO ₅	mg/L	128 ± 51	21 ± 7	25	83.5%		
DBO ₅ -soluble	mg/L	48 ± 26	10 ± 4				
DQO	mg/L	314 ± 240	63 ± 25	125	79.9%		
DQO-soluble	mg/L	92 ± 49	36 ± 16				
NT	mg/L	25.0 ± 8.0	16.3 ± 4.6				
NT-soluble	mg/L	17.1 ± 6.0	15.2 ± 3.7				
NTK	mg/L	23.6 ± 7.8	5.8 ± 2.9				
Amonio	mg N/L	14.5 ± 4.9	2.3 ± 1.6	15 ^(D)	84.1%		
Nitrato	mg N/L	1.20 ± 0.83	10.4 ± 2.4				
Nitrito	mg N/L	0.17 ± 0.10	0.44 ± 0.12				
(a)	Establecido para el efluente de un tratamiento secundario (Directiva 91/271/CEE)						
(b)	Efluente de un tratamiento secundario con nitrificación parcial (Augas de Galicia, 2007)						


Resumen global de valores promedio \pm desviación estándar (número de muestras, n=17; excepto DBO5-soluble y DQO-soluble, donde n=8). Tipo de muestras: simples y compuestas. Temperatura del agua: 14.4 a 18.7 °C



Rendimientos observados por etapa en el sistema de biodiscos

El afluente resultó ser un agua residual de concentración débil porque se produce una gran infiltración de aguas freáticas a la red de saneamiento durante el tiempo húmedo. Así, en la etapa 1 de los biodiscos ya se produjo nitrificación a una tasa promedio de 0.96 g N/m²/d, mientras que la correspondiente velocidad de oxidación orgánica fue 5.17 g s-DBO/m²/d. En la etapa 2, la tasa de nitrificación alcanzó un valor promedio de 1.23 g N/m²/d, mientras que la de oxidación orgánica apenas fue de 0.91 g s-DBO/m²/d.

Autores

