

Diseño de unidad piloto para el tratamiento de aguas de lavado de cubas de hormigón.

Objetivos científico-técnicos

Establecer los criterios de diseño de una planta móvil para el tratamiento "in situ" de las aguas de lavado de hormigoneras para obtener un efluente con la calidad adecuada para que cumpla con objetivos de reutilización, o en su caso, de vertido a medio receptor.

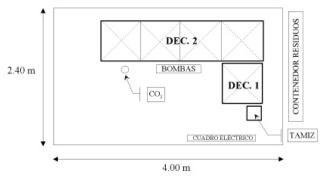
Actividades realizadas

- Análisis de la relación entre el sector de la construcción, el agua y el medio ambiente.
- Problemática de las aguas de lavado de hormigoneras.
- Análisis de la normativa sobre vertidos de aguas residuales, nacional e internacional.
- Descripción de las alternativas de gestión y/o tratamiento de aguas de lavado en obra de camiones hormigonera
- Campaña de caracterización de las aguas de lavado producidas en tres obras civiles de distinta categoría: paso soterrado de vía (Narón), tercera ronda (A Coruña) y edificación (Mesoiro).
- Ensayos de tratabilidad físico-química.
- Establecimiento de criterios de diseño de un sistema de tratamiento "in situ".
- Dimensionamiento de una planta modular (prototipo).

Muestra A: Con limpieza en seco previa Muestra B: Sin limpieza en seco

	Unidad	Muestra A	Muestra B
pH		12,5	12,6
Turbidez	UFT	11	85
Conductividad	mS/cm	9,39	17,12
Alcalinidad "p"	mg CaCO₃/L	2120	3840
Alcalinidad "m"	mg CaCO₃/L	2160	3960
Sólidos Totales	g/L	26,4	412,3
STV	g/L	2,2	38,3
Sólidos en suspensión	g/L	18,8	404,3
SSV	g/L	1	26,3
DQO	mg O ₂ /L	32	130
Aceites y grasas	mg/L	N.M.	N.M.
Cromo VI	mg/L	0,042	0,141
Cromo total	mg/L	0,077	0,228

Aguas de lavado de camión-hormigonera. Obra: 3ª ronda. (14 mayo 2008)


Conclusiones

Los análisis también confirman que el otro parámetro contaminante significativo es el pH y la alcalinidad asociada. Igual que los sólidos en suspensión, las muestras tomadas después de un lavado con limpieza en seco previa presentan una alcalinidad más baja.

Nuevamente, hay que destacar el doble efecto beneficioso de recuperar todo el hormigón posible de las canaletas antes de lavarlas: menos consumo de agua y menos contaminación. Además de repercutir positivamente sobre el ambiente, tendría el mérito de reducir significativamente los costes de explotación de una planta de tratamiento.

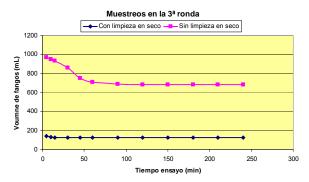
En cuanto a tratabilidad, se demostró que con limpieza en seco la producción de lodos puede reducirse drásticamente de 685 mL/L generados en un lavado sin limpieza en seco, se pasaría a un volumen de 125 mL/L si se procediera a la limpieza en seco previa.

La secuencia de procesos u operaciones podrá comprender: Desbaste, Decantación, Neutralización y Filtración (opcional).

Esquematización de la línea de agua: caso 2 (4 camiones por hora)

Resultados

Los datos destacan que los sólidos en suspensión constituyen el contaminante más significativo de las aguas de lavado de hormigonera.


La diferencia observada en concentración de sólidos en suspensión (puede ir de 20 a 400 g/L) obedece fundamentalmente a dos factores:

- el volumen de agua utilizado en el lavado
- la recuperación que haga el operario del hormigón remanente en las paredes de las canaletas del camiónhormigonera.

La producción de lodos podría reducirse un 95 %, dependiendo de lo exhaustiva que sea la limpieza previa en seco.

Los volúmenes de agua para lavado no son constantes. Sin limpieza previa en seco se produce un promedio de 30 litros de aguas de lavado, mientras que con limpieza en seco menos de 12 litros

Por lo tanto, una buena recuperación de los restos de hormigón de las paredes de las canaletas redundará en un menor consumo de agua así como en una menor producción de residuos.

Efecto de la limpieza en seco previo al lavado de las hormigoneras sobre la producción de fangos de depuración. Muestras tomadas en la obra de la 3ª ronda.

A. Jácome Burgos (UDC) J. Suárez López (UDC) H. [J. Molina Burgos (GEAMA) P

S. Vieito Raña (GEAMA) H. Del Río Cambeses (GEAMA) P. Ures Rodríguez (GEAMA)

